MITSUBISHI ELECTRIC HYDRONICS & IT COOLING SYSTEMS S.p.A.

IT COOLING

"THE GREATER PART OF PROGRESS IS THE DESIRE TO PROGRESS"

Lucio Anneo Seneca Latin Philosopher (4 BC - 64 AC)

High efficiency air cooled chiller with oil-free compressors and free-cooling, 302-1693 kW

Resulting from the recognised prestige of RC brand products utilizing magnetic levitation technology, TRCS-FC-Z air cooled chillers match the advantages of oil-free technology with a free-cooling system.

TRCS-FC-Z is also available as TRCS-FC-G05-Z with the innovative R513A refrigerant, which represents a low GWP alternative to R134a units.

IT COOLING APPLICATIONS

- Data centers and server rooms
- Technological hubs
- Office buildings
- Telecommunication installations
- Laboratories and technical rooms

TOP-LEVEL EFFICIENCY

Strict energy consumption and environmental impact regulations continually push towards ever more efficient units. Achieving the greatest energy savings and ensuring long-term sustainability are challenges that modern cooling systems need to tackle.

TRCS-FC-Z range of chillers adopts an advanced free-cooling system that has been conceived to reduce the compressor work and maximize the use of the outdoor air.

VERSIONS

Key efficiency, compact version

High energy efficiency

2 REFRIGERANT OPTIONS

RC oil-free compressor chillers are now available with two refrigerants, both dedicated to comfort applications:

- **TRCS-FC-Z:** High efficiency air cooled chiller with free-cooling and R134a high performing refrigerant.

- **TRCS-FC-G05-Z:** High efficiency air cooled chiller with free-cooling and R513A high performing and low GWP refrigerant.

CONFIGURATIONS

Standard free-cooling

Function for free-cooling without glycol

MITSUBISHI ELECTRIC HYDRONICS & IT COOLING SYSTEMS S.p.A. SOME PROJECTS DON'T ACCEPT COMPROMISES, THEY SIMPLY DEMAND THE BEST TECHNOLOGY.

THE FOREFRONT OF PROGRESS

The power of ultimate technological solutions and a massive use of renewable resources have been merged to create TRCS-FC-Z.

WIDEST USE OF FREE-COOLING

Capitalizing on the energy of the environment to cut operating costs.

Thanks to special heat exchangers featuring a large surface area and advanced logics for free-cooling management, the liquid is cooled by outdoor air, thus lowering the load of the compressors to zero. This already occurs at positive outdoor temperatures.

UNBEATABLE PERFORMANCE

Top-level seasonal efficiencies thanks to technological solutions that are at the forefront of innovation: magnetic levitation compressors, flooded evaporator, and EC fans for the highest energy savings.

HIGHEST MANUFACTURING QUALITY

RC has over ten years of experience with magnetic levitation compressors and extensive expertise in free-cooling technology.

The RC brand oil-free chiller range takes advantage of this profound experience in order to achieve the highest quality standards in every single detail.

NOW EVEN WITH R513A REFRIGERANT

Combining brilliant annual efficiency with the use of a low GWP refrigerant, the RC branded range of chillers with R513A tackles both indirect (due to primary energy consumption) and direct global warming, thus resulting in the perfect choice for any new, forward-looking cooling system.

EER: over 4,0 (1)

(1) Water (in/out) 15°C/10°C; Air (in) 30°C; Et. glycol 30%. (2) Water (in/out) 27°C/20°C; Air (in) 30°C; Et. glycol 30%. TFC*: over 2,0 °C (3)

(3) Water (in/out) 15°C/10°C; Et. glycol 30%.
 (4) Water (in/out) 27°C/20°C; Et. glycol 30%.
 *TFC: Total Free-cooling

FREE-COOLING TECHNOLOGY

Free-cooling potential: temperature occurrence distribution

Wherever cooling demand is constant all year round, free-cooling provides significant energy saving opportunities.

In a cooling system located in London, working with favorable levels of water temperature (such as 27-20°C), the outdoor air alone can satisfy the cooling demand

50,3% of the time. 49,6% of the time, the outdoor air cooling capacity allows the chiller's compressors to run at part loads, with a significant increase in efficiency. For only 0,1% of the time, the unit works as an ordinary chiller.

How RC masters free-cooling

RC's free-cooling chillers work in three different modes: Total free-cooling, Hybrid cooling, Mechanical cooling, according to outdoor air conditions and operating water temperature. As the outdoor air temperature drops 1 degree below the returning water temperature, a valve system redirects the water to special coils and the benefits of the free-cooling begin.

Total free-cooling

- ► The outdoor air temperature is low enough to satisfy the entire cooling demand.
- Total cooling capacity is provided by the outdoor air in the free-cooling coils while the compressors are off.

Maximum Energy Savings

THE ULTIMATE SOLUTION TO HARNESS THE FULL POTENTIAL OF RENEWABLE SOURCES

Efficiency comparison: traditional chillers vs free-cooling chillers

To understand how free-cooling can cut the energy bill of your cooling system, it is sufficient to compare the efficiency of a TRCS-FC-Z unit with the efficiency of a comparable technology chiller without free-cooling. When the outdoor air temperature is too high to provide free-cooling, the EER (Energy Efficiency Ratio) of the two units are aligned. But as the air temperature decreases, the gap between the units' efficiency becomes clear and even huge. In total free-cooling mode, the compressors are off and very little energy is needed to provide the whole cooling capacity.

Note: Plant (side) cooling exchanger water (in/out) 27°C/20°C; Ethylene glycol 30%.

FREE COOLING

20

Hybrid cooling

- The outdoor air temperature is lower than the returning water temperature but not cold enough to achieve total free-cooling.
- Part of the cooling capacity is provided by the outdoor air while the rest is provided by the compressors.

Optimised Source Management

Mechanical cooling

- ► The outdoor air temperature is equal to or higher than the returning water temperature.
- ► Total cooling capacity is provided by the compressors, in the evaporator.

Conventional Chiller Operation

TECHNOLOGICAL CHOICES

EC fans

Hold the reins on air flow rate

Managing both free-cooling and condensation with rough air flow regulation would mean a significant energy loss due to unfavourable condensation pressure or not capitalising on free-cooling.

EC fans are efficient and silent and have the capability to adjust their rotational speed continuously. Their accurate and quick air flow regulation allows RC's control functions to perform at their best, granting the best possible unit operation in any condition.

Special coils

Keep the efficiency up over time

Free-cooling efficacy is strictly related to the effectiveness of the air/water direct heat exchange. Nevertheless, an efficient air/refrigerant coil is necessary for proper condensation.

A special coil, made of both refrigerant and water tubes, achieves both goals. This particular configuration, instead of two separate finned coils, also prevents fin spacing misalignment and dust and dirt accumulation. Hence low pressure drops and high heat exchange efficiency will last.

ADVANCED CONTROL

The controller features proprietary settings that ensure fast adaptive responses to different dynamics, in all operating modes.

The interface is intuitive and userfriendly thanks to the adoption of LED icons for a full and immediate status display of the various circuits.

Standard interface

- ✓ Easy-to read LED icons
- Controls for easy and safe access to the unit's settings

RC brand manufacturing quality in every detail. Extreme efficiency and absolute reliability: the secret formula is cutting-edge technologies and deep know-how.

Flooded evaporator

Excellence in the heat exchange

Designed and built internally, the geometry of the flooded evaporator grants optimum temperature distribution along the shell, hence highly efficient heat exchange and low refrigerant pressure drops.

Allowing the over-heating surface to be eliminated, the flooded evaporation delivers unbeatable heat exchange efficiency, but it also requires maximum care in keeping the exact liquid refrigerant level. This could become tricky in case of wide variations of the evaporator cooling load, which in these units happens again and again due to free-cooling contribution. RC units ensure a fully reliable way out thanks to specific design solutions and proprietary electronic expansion valve control algorithms.

Centrifugal compressor with magnetic levitation technology

The expertise makes the difference

These top level technology compressors bring enormous benefits in terms of efficiency, adjustments, vibrations and weight. Magnetic levitation eliminates the need for lubricant, its delicate management and heat exchange penalisation. Partial load efficiency, which is crucial during the hybrid operation, is therefore strongly increased.

A profound knowledge is necessary to harness such a concentration of technology and here is where the RC brand really makes the difference thanks to its 10-year experience in oil-free compressors units and thousands of projects all over the world.

THE BRAIN BEHIND THE SUCCESS

As an option, a 7" color touch screen display interface is available with a USB port, for quick and easy application updates and downloading of all registered variables in graphic form.

Optional touch screen interface

- ✓ 7" color display
- ✓ USB Port

T

TRCS-FC-Z

FOR MISSION CRITICAL APPLICATIONS

Highest standards of reliability and reduced running costs, without any compromise.

In IT cooling applications, telecommunication infrastructures and many manufacturing and chemical industrial processes, downtime costs are a crucial aspect. In all these applications, an interruption in the cooling supply may seriously compromise the technical equipment operation, causing unexpected shutdowns. RC's approach to cooling dependability goes beyond the unit's accurate and sturdy design.

It also involves several devices and functions that maximize unit's uptime in case of emergency circumstances such as power supply outage.

FAST RESTART

Sometimes few seconds can determine the shutdown of the entire facility.

After a power failure, the cooling must be ensured as soon as possible. Fast Restart is the special function that ensures:

Immediate cooling start-up

Compressor start-up within 26" after power is restored.

Accelerated cooling ramp-up

1000 kW are delivered within 6' 30" after a voltage dip.

SMART PUMP MANAGEMENT

Free-cooling units lead to high energy savings but, because of their very nature, they always involve a water flow management issue: when the free-cooling is activated, the pressure drops suddenly increase due to the additional path throughout the free-cooling coils. This causes a significant change in the pump working conditions.

With the 2PS (2 Pump Speeds) function (opt), the unit adjusts the pump speed according to the free-cooling chiller operating mode, keeping the water flow steady without any energy waste nor hydraulic plant complication.

Variable primary flow management To leverage load variation

2 Pump Speed adjustment Perfect for free-cooling units

The awareness of the most demanding application requirements and the commitment to improve their energy efficiency has led to the development of devoted solutions.

DOUBLE POWER SUPPLY

Redundancy increases uptime.

With the aim of enhancing cooling dependability, TRCS-FC-Z extends this concept also to the electrical supply.

With the double power supply configuration, the unit is equipped with an ATS (Automatic Transfer Switch) and can be connected to two separate power lines (usually the mains and the auxiliary generator line). In case of a main line power outage, the ATS automatically switches over to the other line, granting uninterrupted power supply to the unit.

The double power supply makes TRCS-FC-Z suitable for TIER III and TIER IV* design topologies, the highest standards of reliability.

*Widely accepted within the uninterruptible industry, the Uptime Institute's TIER Performance Standards and Classifications are an objective basis for comparing the capabilities of a particular design topology against others or to compare groups of sites.

WIDE OPERATING RANGE

Driven by exponential growth of data exchange and rising power densities, data center design is changing dramatically over time. Cooling equipment needs to evolve together with the IT devices, always striving for reducing the running costs.

Modern infrastructures are designed to work with cooling water temperatures which are higher than traditional levels, significantly enhancing the overall efficiency of the cooling system.

TRCS-FC-Z has been developed to operate properly with leaving water temperature up to 20°C, ensuring outstanding energy savings and fully capitalizing on free-cooling.

TRCS-FC-G05-Z 0211 - 1204 High efficiency air cooled chiller with free-cooling, 302 kW -1649 kW

Fully committed to supporting the creation of a greener tomorrow, Mitsubishi Electric Hydronics & IT Cooling Systems designed TRCS-FC-G05-Z, a complete large capacity chiller range with reduced environmental impact, optimized for R513A refrigerant.

Combining brilliant annual efficiency with the use of a low GWP refrigerant, TRCS-FC-G05-Z tackles both the indirect (due to primary energy consumption) and the direct global warming, thus resulting in the perfect choice for any new, forward-looking cooling system.

Non-flammable Safety Class A1

REFRIGERANT BENCHMARK

New regulations like the EU F-gas and the Kigali Amendment to the Montreal Protocol, are driving the industry towards new eco-friendly refrigerants, with reduced greenhouse effect.

Unfortunately, the majority of low GWP refrigerants raises another critical issue: flammability.

The new refrigerant R513A, chosen for TRCS-FC-G05-Z, is a brilliant exception: it offers a -56% GWP reduction compared to R134a's while ensuring complete non-toxicity and non-flammability (Class A1 of ASHRAE 34, ISO 817).

😽 FREE C. 🛛 🦓 CENTRIE 🛛 FL FLOODED

VSPEED VPF SCOOLING CC AXIAL

TRCS-FC-G05-Z/K		0211	0351	0452	0552	0652	0712	0903	0953	1003	1164	1204
Power supply	V/Ph/H;	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PERFORMANCE												
MECHANICAL COOLING (GROSS VALUE)												
Cooling capacity	(1) kW	299,2	479,3	590,0	682,1	932,1	969,4	1173	1238	1409	1558	1627
Total power input	(1) kW	87,50	140,4	177,9	180,1	284,6	275,0	319,5	372,8	425,0	456,2	459,3
EER	 kW/kW 	3,419	3,414	3,316	3,787	3,275	3,525	3,671	3,321	3,315	3,415	3,542
MECHANICAL COOLING (EN14511	VALUE)											
Cooling capacity (2	2)(3) kW	297,1	475,7	586,0	677,0	925,4	962,2	1166	1231	1399	1547	1615
EER (2	2)(3) kW/kW	3,310	3,300	3,220	3,650	3,180	3,410	3,570	3,240	3,220	3,310	3,430
SEPR (4	4)(5)	6,59	6,53	6,38	6,62	6,39	6,54	6,41	6,23	6,27	6,23	6,27
TOTAL FREE-COOLING (GROSS VAL	LUE)											
Total free-cooling temperature	(6) °C	-1,8	-2,4	-1,8	-1,3	-2,5	-1,3	-1,1	-2,5	-2,4	-1,5	-1,6
Cooling capacity	(6) kW	299,2	479,3	590,0	682,1	932,1	969,4	1173	1238	1409	1558	1627
EER	(6) kW/kW	58,67	49,93	49,17	66,87	55,48	50,49	48,88	51,58	53,37	49,94	52,15
ENERGY EFFICIENCY												
MECHANICAL COOLING (GROSS VALUE)												
16°C/10°C												
Cooling capacity	(7) kW	299,2	479,3	590,0	682,1	932,1	969,4	1173	1238	1409	1558	1627
lotal power input	(/) KW	87,50	140,4	177,9	180,1	284,6	275,0	319,5	372,8	425,0	456,2	459,3
EER	(7) kW/kW	3,419	3,414	3,316	3,787	3,275	3,525	3,671	3,321	3,315	3,415	3,542
23°C/15°C											1700	
Cooling capacity	(8) KW	342,9	537,3	674,9	/61,/	1038	1091	1313	1391	15/4	1763	1823
Iotal power input	(8) KW	91,60	143,1	186,0	182,2	289,6	281,2	323,9	381,2	434,3	470,0	467,3
EEK	(8) KW/KW	3,743	3,755	3,628	4,181	3,584	3,880	4,054	3,649	3,624	3,751	3,901
EXCHANGERS												
HEAT EXCHANGER USER SIDE IN H		15.05	05.00	01.00	00.14	40.00	E1 00	CO 1C		74.00	00.50	00.01
Dresource drop (2)	(3) I/S	15,85	25,39	31,20	30,14	49,38	51,30	02,10	00,09	101	82,52	00,21
	2)(3) KP2	04,3	97,2	00,0	102	101	105	90,0	10,3	101	105	112
	NG	1	1	2	2	2	2	3	3	3	1	4
No. Circuite	N N	1	1	1	1	1	1	2	2	2	4	4
Pofrigorant charge	IN KC	120	140	260	260	220	220	120	520	520	540	540
	ν	120	140	200	200	520	520	430	520	520	540	540
Sound Pressure	(Q) dR(A)	56	61	62	58	63	63	64	64	65	65	65
Sound nower level in cooling (10	(3) dB(A)	88	93	94	91	96	96	97	97	98	98	98
SIZE AND WEIGHT)(11) UD(/)	00	50	54	51	50	50	51	57	50	50	50
A (*	12) mm	4000	4000	4900	6400	7000	7900	10600	11200	11200	13000	13600
B (*	12) mm	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260
H (*	12) mm	2500	2500	2500	2500	2500	2500	2500	2500	2500	2500	2500
Operating weight	12) kg	3430	3850	5080	5820	6340	6900	9750	10260	10530	12290	12350

TRCS-FC-G05-Z/CA			0211	0251	0351	0452	0552	0712	0803	0903	1003
Power supply		V/Ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PERFORMANCE											
MECHANICAL COOLING (GROSS VALUE)											
Cooling capacity	(1)	kW	306,5	351,4	492,6	609,7	705,6	979,4	1058	1195	1433
Total power input	(1)	kW	85,80	89,50	133,8	172,4	176,9	268,1	266,3	308,1	412,7
EER	(1)	kW/kW	3,572	3,926	3,682	3,537	3,989	3,653	3,973	3,879	3,472
MECHANICAL COOLING (EN14511 VALUE)	(0) (0)			o 40 T	100 -				4050		
Cooling capacity	(2)(3)	KW	304,2	348,7	488,7	605,3	700,0	972,0	1052	1187	1423
EER	(2)(3)	KW/KW	3,450	3,780	3,550	3,420	3,840	3,530	3,870	3,760	3,370
	(4)(5)		6,90	6,87	7,11	6,78	6,83	6,89	6,84	6,82	6,60
Total free-couling (GRUSS VALUE)	(0)	00	0.0	0.1	0.0	0.4	0.5	0.0	0.0	0.1	1 5
Total free-cooling temperature	(6)	-0	0,0 206 F	-0,1	-0,9	-0,4	0,5 705 6	-0,8	0,3	0,1	-1,0
	(0)	KW KW	500,5	51 69	492,0	009,7 50.77	700,0	979,4 57.61	1000 51.96	54.07	1433
	(0)	KVV/KVV	00,10	51,00	57,95	59,11	51,00	57,01	51,00	54,07	04,04
16°C/10°C											
Cooling capacity	(7)	kW	306,5	351,4	492,6	609,7	705,6	979,4	1058	1195	1433
Total power input	(7)	kW	85,80	89,50	133,8	172,4	176,9	268,1	266,3	308,1	412,7
EER	(7)	kW/kW	3,572	3,926	3,682	3,537	3,989	3,653	3,973	3,879	3,472
23°C/15°C											
Cooling capacity	(8)	kW	351,2	390,2	554,8	699,5	780,6	1103	1171	1333	1609
Total power input	(8)	kW	89,60	89,70	136,7	180,1	176,4	274,2	266,1	311,1	422,8
EER	(8)	kW/kW	3,920	4,350	4,059	3,884	4,425	4,023	4,401	4,285	3,806
EXCHANGERS	ATION										
HEAT EXCHANGER USER SIDE IN REFRIGE	RATION	1/-	10.04	10.00	00.10	00.00	07.00	F1 00	50.04	00.00	75.01
Water flow	(3)	I/S	16,24	18,62	26,10	32,30	37,38	51,89	56,04	63,28	105
	(2)(3)	KPa	88,5	94,9	103	94,0	109	107	73,1	93,3	105
		NIO	1	1	1	0	2	0	2	2	2
No Circuite		IN Nº	1	1	1	ے 1	2	2 1	2	2	2
Refrigerant charge		ka	120	120	1/0	260	280	320	130	130	520
		ng	120	120	140	200	200	520	400	400	520
Sound Pressure	(9)	dB(A)	56	57	58	58	59	60	61	61	61
Sound nower level in cooling	(10)(11)	dB(A)	88	89	90	91	92	93	94	94	94
SIZE AND WEIGHT	(10)(11)	ub(r)	00	00	50	51	52	50	54	54	54
A	(12)	mm	4000	4000	4900	6400	7900	10000	12100	13000	13000
В	(12)	mm	2260	2260	2260	2260	2260	2260	2260	2260	2260
Н	(12)	mm	2500	2500	2500	2500	2500	2500	2500	2500	2500
Operating weight	(12)	kg	3660	3790	4380	5720	6770	8870	10530	11370	11730
	. /	Ŭ									

TRCS-FC-Z 0211 - 1204

High efficiency air cooled chiller with free-cooling 302 kW -1649 kW

TRCS-FC-Z/K			0211	0351	0452	0552	0652	0712	0903	0953	1003	1164	1204
Power supply		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PERFORMANCE													
COOLING ONLY (GROSS VALUE)													
Cooling capacity	(1)	kW	302,2	482,7	594,2	689,0	943,4	980,2	1185	1253	1421	1578	1649
Total power input	(1)	kW	87,10	140,9	178,6	181,0	285,2	275,2	320,1	373,2	424,6	455,0	460,6
EER	(1)	kW/kW	3,470	3,426	3,327	3,807	3,308	3,562	3,702	3,357	3,347	3,468	3,580
MECHANICAL COOLING (EN14511 VALUE)													
Cooling capacity	(2)(3)		300,0	479,0	590,1	683,7	936,5	972,8	1177	1246	1411	1567	1637
EER	(2)(3)	kW/kW	3,360	3,310	3,230	3,670	3,210	3,3,440	3,590	3,280	3,250	3,360	3,460
SEPR	(4)(5)		6,66	6,54	6,39	6,64	6,43	6,58	6,45	6,28	6,32	6,30	6,31
TOTAL FREE-COOLING (GROSS VA	ALUE)												
Total free-cooling temperature	(6)	°C	-1,9	-2,5	-1,9	-1,4	-2,7	-1,4	-1,2	-2,7	-2,5	-1,6	-1,8
Cooling capacity	(6)	kW	302,2	482,7	594,2	689,0	943,4	980,2	1185	1253	1421	1578	1649
EER	(6)	kW/kW	59,25	50,28	49,52	67,55	56,15	51,05	49,38	52,21	53,83	50,58	52,85
MECHANICAL COOLING (GROSS V 16°C/10°C	/ALUE)												
Cooling capacity	(7)	kW	302.2	482.7	594.2	689.0	943.4	980.2	1185	1253	1421	1578	1649
Total power input	(7)	kW	87.10	140.9	178.6	181.0	285.2	275.2	320.1	373.2	424.6	455.0	460.6
EER	(7)	kW/kW	3.470	3.426	3.327	3.807	3.308	3.562	3.702	3.357	3.347	3.468	3.580
23°C/15°C	()		-, -	-, -	- , -	-,	-,	-)	-, -	-,	- / -	-,	-,
Cooling capacity	(8)	kW	346,4	541,1	679,7	769,4	1051	1103	1327	1407	1588	1787	1847
Total power input	(8)	kW	91,20	143,6	186,7	183,0	290,1	281,4	324,5	381,5	433,9	468,7	468,6
EER	(8)	kW/kW	3,798	3,768	3,641	4,204	3,623	3,920	4,089	3,688	3,660	3,813	3,942
EXCHANGERS													
HEAT EXCHANGER USER SIDE IN	REFRIGERA	TION											
Water flow	(3)	l/s	16,01	25,57	31,48	36,50	49,98	51,93	62,78	66,38	75,30	83,61	87,35
Pressure drop	(2)(3)	kPa	86,0	98,6	89,3	104	104	107	91,8	80,2	103	106	115
REFRIGERANT CIRCUIT													
Compressors nr.		N°	1	1	2	2	2	2	3	3	3	4	4
No. Circuits		N°	1	1	1	1	1	1	2	2	2	2	2
Refrigerant charge		kg	120	140	260	260	320	320	430	520	520	540	540
NOISE LEVEL													
Sound Pressure	(9)	dB(A)	56	61	62	58	63	63	64	64	65	65	65
Sound power level in cooling	(10)(11)	dB(A)	88	93	94	91	96	96	97	97	98	98	98
SIZE AND WEIGHT													
A	(7)	mm	4000	4000	4900	6400	7000	7900	10600	11200	11200	13000	13600
В	(7)	mm	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260
H	(7)	mm	2500	2500	2500	2500	2500	2500	2500	2500	2500	2500	2500
Operating weight	(7)	kg	3430	3850	5080	5820	6340	6900	9750	10260	10530	12290	12350

Notes:

1 Plant (side) cooling exchanger water (in/out) 15°C/10°C; Source (side) heat exchanger air (in) 30°C; Ethylene glycol 30%.

2 Values in compliance with EN14511

3 Plant (side) cooling exchanger water (in/out) 15°C/10°C; Ethylene glycol 30%.

4 Average sound pressure level at 10m distance, unit in a free field on a reflective surface; non-binding value calculated from the sound power level.

5 Sound power on the basis of measurements made in compliance with ISO 9614.

6 Sound power level in cooling, outdoors.

7 Unit in standard configuration/execution, without optional accessories.

8 Seasonal energy efficiency of high temperature process cooling [REGULATION (EU) N. 2016/2281]

9 Seasonal Energy Efficiency of Process Cooling at Medium Temperature [REGULATION (EU) N. 2015/1095]

10 Seasonal energy efficiency ratio

TRCS-FC-G05-Z on page 11: The units highlighted in this publication contain R513A [GWP100 631] fluorinated greenhouse gases.

TRCS-FC-Z on pages 12 and 13: The units highlighted in this publication contain HFC R134a [GWP1001430] fluorinated greenhouse gases.

TRCS-FC-Z /CA			0211	0251	0351	0452	0552	0712	0803	0903	1003
Power supply		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PERFORMANCE											
COOLING ONLY (GROSS VALUE)											
Cooling capacity	(1)	kW	309,6	353,9	496,1	615,8	714,1	990,3	1068	1209	1446
Total power input	(1)	kW	85,40	89,80	134,3	173,2	177,2	268,3	266,8	308,4	412,3
EER	(1)	kW/kW	3,625	3,941	3,694	3,555	4,030	3,691	4,003	3,920	3,507
MECHANICAL COOLING (EN14511 VALUE))										
Cooling capacity	(2)(3)	kW	307,3	351,1	492,1	611,3	708,3	982,7	1062	1201	1436
EER	(2)(3)	kW/kW	3,500	3,790	3,560	3,440	3,870	3,560	3,900	3,800	3,400
SEPR	(4)(5)		6,97	6,90	7,13	6,80	6,88	6,94	6,88	6,88	6,65
TOTAL FREE-COOLING (GROSS VALUE)											
Total free-cooling temperature	(6)	°C	-0,1	-0,2	-1,0	-0,5	0,4	-0,9	0,2	0,0	-1,6
Cooling capacity	(6)	kW	309,6	353,9	496,1	615,8	714,1	990,3	1068	1209	1446
EER	(6)	kW/kW	60,71	52,04	58,36	60,37	52,51	58,25	52,35	54,71	65,43
MECHANICAL COOLING (GROSS VALUE) 16°C/10°C											
Cooling capacity	(7)	kW	309,6	353,9	496,1	615,8	714,1	990,3	1068	1209	1446
Total power input	(7)	kW	85,40	89,80	134,3	173,2	177,2	268,3	266,8	308,4	412,3
EER	(7)	kW/kW	3,625	3,941	3,694	3,555	4,030	3,691	4,003	3,920	3,507
23°C/15°C	.,										
Cooling capacity	(8)	kW	354,7	393,0	558,7	706,6	790,1	1115	1183	1349	1623
Total power input	(8)	kW	89,20	90,10	137,2	181,0	176,7	274,5	266,5	311,4	422,4
EER	(8)	kW/kW	3,976	4,362	4,072	3,904	4,471	4,062	4,439	4,332	3,842
EXCHANGERS	(8)										
HEAT EXCHANGER USER SIDE IN REFRIG	ERATION										
Water flow	(3)	l/s	16,40	18,75	26,28	32,63	37,83	52,47	56,60	64,05	76,60
Pressure drop	(2)(3)	kPa	90,3	96,3	104	95,9	111	109	74,6	95,6	107
REFRIGERANT CIRCUIT											
Compressors nr.		N°	1	1	1	2	2	2	3	3	3
No. Circuits		N°	1	1	1	1	1	1	2	2	2
Refrigerant charge		kg	120	120	140	260	280	320	430	430	520
NOISE LEVEL											
Sound Pressure	(9)	dB(A)	56	57	58	58	59	60	61	61	61
Sound power level in cooling	(10)(11)	dB(A)	88	89	90	91	92	93	94	94	94
SIZE AND WEIGHT											
A	(7)	mm	4000	4000	4900	6400	7900	10000	12100	13000	13000
В	(7)	mm	2260	2260	2260	2260	2260	2260	2260	2260	2260
Н	(7)	mm	2500	2500	2500	2500	2500	2500	2500	2500	2500
Operating weight	(7)	kg	3660	3790	4380	5720	6770	8870	10530	11370	11730

Notes:

1 Plant (side) cooling exchanger water (in/out) 15°C/10°C; Source (side) heat exchanger air (in) 30°C; Ethylene glycol 30%.

2 Values in compliance with EN14511

3 Plant (side) cooling exchanger water (in/out) 15°C/10°C; Source (side) heat exchanger air (in) 30°C; Ethylene glycol 30%

4 Seasonal energy efficiency ratio

5 Seasonal energy efficiency of high temperature process cooling [REGULATION (EU) N. 2016/2281]

6 Plant (side) cooling exchanger water (in/out) 15°C/10°C; Ethylene glycol 30%.

7 Plant (side) cooling exchanger water (in/out) 15°C/10°C; Source (side) heat exchanger air (in) 35°C; Ethylene glycol 30%

8 Plant (side) cooling exchanger water (in/out) 23°C/15°C; Source (side) heat exchanger air (in) 35°C; Ethylene glycol 30%

9 Average sound pressure level at 10m distance, unit in a free field on a reflective surface; non-binding value calculated from the sound power level. 10 Sound power on the basis of measurements made in compliance with ISO 9614.

11 Sound power level in cooling, outdoors.

12 Unit in standard configuration/execution, without optional accessories.

TRCS-FC-G05-Z on page 11: The units highlighted in this publication contain R513A [GWP100 631] fluorinated greenhouse gases.

TRCS-FC-Z on pages 12 and 13: The units highlighted in this publication contain HFC R134a [GWP1001430] fluorinated greenhouse gases.

ACCESSORIES

Leak detector with automatic refrigerant migration

• Energy meter with BMS interface

Electromagnetic compatibility (EMC) - EN6100-6-3 for residential environments

POWERFUL FLEXIBILITY

A MIGHTY CORE TAILORED TO A PROJECT'S NEEDS

Every job has its own specific needs. Because of the skillful use of component technical features, the TRCS-FC-Z range perfectly tailors the actual specifications and priorities of any project.

A definite cooling demand can in fact be provided giving priority to reducing the initial investment cost (leading cooling capacity), or putting a premium on annual energy savings and payback time (leading efficiency).

(1) Water (in/out) 15°C/10°C; Air (in) 30°C; EL glycol 30%. (2) Water (in/out) 27°C/20°C; Air (in) 30°C; EL glycol 30%. (3) Water (in/out) 15°C/10°C; EL glycol 30%. (4) Water (in/out) 27°C/20°C; EL glycol 30%.

THDI AND POWER FACTOR

The accurate design of electrical and electronic components and the use of specific solutions, such as compressor line reactors (std) and power factor correction capacitors (opt), reduce the THDi (Total Harmonic Distortion of current) and increase unit's Power Factor. To fit even the most demanding requirements, modular active harmonic filters can be added to cut the THDi down to values below 5%.

HFO REFRIGERANT

In line with the most severe environmental regulations, TRCS-FC-Z is also available with the new green HFO 1234ze refrigerant. A solution that complies with the highest efficiency targets required by modern projects, whilst offering an eco-friendly alternative to HFCs.

ClimaPRO

According to the units' actual efficiency curves, ClimaPRO continuously optimises plant working conditions by promptly adjusting equipment staging and sequencing, managing operating set-points and controlling water flows throughout the entire system. ClimaPRO can be natively interfaced with any BMS or it can successfully perform all functions on its own.

"EXPERIENCE IS BY FAR THE BEST PROOF"

Sir Francis Bacon British philosopher (1561-1626)

Galileo connect London central

London - Great Britain

Application: Data Center Plant type: HPAC System Cooling capacity: 4852 kW Installed machines: 3x air cooled chillers with oil-free compressors, 29x chilled water Close Control units

ECMWF European Centre for Medium range Weather Forecasts

Reading - Great Britain

Application: Data Center – Office building Cooling capacity: 4596 kW Installed machines: 6x air cooled chillers with oil-free compressors, 2x high efficiency air cooled chillers with oil-free compressors

Fastweb datacenter TIER IV

Milan - Italy

Application: Data Center Plant type: Hydronic System Cooling capacity: 2800 kW Installed machines: 4x high efficiency air cooled chillers with oil-free compressors

ſ

Eco Changes is the Mitsubishi Electric Group's environmental statement, and expresses the Group's stance on environmental management. Through a wide range of businesses, we are helping contribute to the realization of a sustainable society.

MITSUBISHI ELECTRIC HYDRONICS & IT COOLING SYSTEMS S.p.A.

Head Office: Via Roma 5 - 27010 Valle Salimbene (PV) - Italy Tel +39 (0) 382 433 811 - Fax +39 (0) 382 587 148 www.rcitcooling.com www.melcohit.com