MITSUBISHI ELECTRIC HYDRONICS & IT COOLING SYSTEMS S.p.A.

IT COOLING

UNITS FOR SIMULTANEOUS AND INDEPENDENT PRODUCTION OF HOT AND COLD WATER

AIR SOURCE UNITS FOR 4-PIPE SYSTEMS, WITH SCREW COMPRESSORS AND FULL INVERTER TECHNOLOGY, FROM 341 TO 1125 kW

IT COOLING

FULL-INVERTER TECHNOLOGY THE HIGHEST ENERGY EFFICIENCY, ALWAYS.

The inverter technology with continuous variable speed shows its advantages particularly when applied to multi-purpose units.

The new inverter driven i-FR-Q₂-Z units always reach higher efficiencies than fixed speed units, with any combination of cold / hot load, and in any season.

02/03

The presence of Variable Speed Drive (VSD) compressors allows the INTEGRA unit, i-FR-Q₂-Z to effectively follow each combination of thermal loads required by the system, with increasingly higher TER efficiencies (up to 19%) compared to those units with fixed speed compressors.

Average value		+14%	
100%	0%-100%	+5%	_
80%	0%-100%	+9%	_
60%	0%-100%	+17%	
40 %	0%-100%	+19%	*
20%	0%-100%	+18%	
0%	0%-100%	+14%	
Cooling load [%](*)	Thermal load [%](*)	Median increase in TER VSD vs. fixed speed	

The comparison was made between an INTEGRA ERACS-Q /CA air source unit with fixed speed screw compressor and an i-FR-Q2-Z one with VSD screw compressors.

* Load refers to the maximum cooling capacity of the unit in

the following conditions: Evaporator water (in / out) = 12/7 °C Condenser water (in / out) = 40/45 °C Air room temperature = 15 °C

FULL INVERTER TECHNOLOGY THE HIGHEST ENERGY EFFICIENCY, ALWAYS.

UNBEATABLE EFFICIENCY AT PARTIAL LOADS

In traditional applications the HVAC plant usually works at full load only for few hours every year. Most of the time the unit works at partial loads.

Even in applications with high load profiles, such as IT Cooling applications, INVERTER INTEGRA achieves higher seasonal efficiencies compared to traditional fixed speed units: **SCOP up to +20% SEPR HT up to +15%**

The minimum efficiency requirements of the EU regulation, ErP 2009/125 / EC, are also pinpointed in TIER 2021

HIGHEST ACOUSTICAL COMFORT

The more you increase the partialisation activity the lower your sound emissions will be, thanks to capacity of inverter technology to continually modulate the compressor rotation. Most of the time the units are characterized by lower sound power levels compared to fixed speed compressor units, this always ensures the highest acoustical comfort.

The sound emissions can be further reduced thanks to dedicated versions and a vast array of accessories.

Air units INTEGRA inverter i-FR-Q2-Z

Air units INTEGRA fixed speed ERRCS2-Q-Z/CA

Partialisation SEER values as per EN14825: 2013

04/05

NO IN-RUSH CURRENT

The inverter technology involves a start-up phase with very low in-rush current, lower than any other mode (direct start, star / delta, part winding or soft start). The absence of sudden peaks and abrupt changes in the starting torque, in addition to eliminating possible disturbances to the electricity power network, reduces the stress to zero on the electrical components and improves the reliability of the system.

The frequency converters chosen by RC are characterized by values of Displacement Power Factor of between 0.97 and 0.99. The resulting unit power factor at rated nominal operating conditions is always higher than that of similar technology without an inverter unit. The need to install power factor correction devices of the loads is therefore reduced.

____ direct on line _____ soft starter ____ star delta _____ frequency converter

FLEXIBILITY IN SELECTING UNITS

Thanks to specific technical solutions and proprietary control functions, RC's inverter units can be selected at various speed conditions, which is different from the nominal ones. Whatever the needs to be met: maximum operating efficiency, reducing the initial investment, future power increase of the plant, it is always possible to identify the most suitable units.

1060

800 900 1000 1100 1200 **kW**

125

FROM 341 TO 1125 kW

VERSIONS:

CA Class A Efficiency SL-CA Super Low noise, Class A Efficiency XL-CA Extra Low noise, Class A Efficiency

i-FR-Q2-Z is a multi-purpose outdoor unit able to simultaneously produce chilled and hot water by means of two independent hydronic circuits. Thanks to the full inverter technology of the screw compressors and the EC fans, these units effectively follow each combination of thermal loads, always providing the exact thermal energy required by the system. This results in top-level efficiency values and very low energy consumption throughout the year, whatever the cooling mode and the weather condition.

Main accessories:

100 200 300

- "LT" kit for working down to -12°C in heat pump mode
- NOISE REDUCER (only on not silenced versions)
- Special fan diffusers
- Thicker soundproofing cladding

400 500 600 700

- Hydronic group
- VPF (Variable Primary Flow) system
- Set-up for remote connectivity with
- ModBus, Echelon, Bacnet, Bacnet over-IP.
- Touch Screen visual display
- Leak detector

Extended working range An extended working range which ensures the working operation of the unit all year long and in any working mode.

0

Full inverter technology Independent circuits with screw compressors inverters and EC standard fans.

Green refrigerant Use of innovative green refrigerants, with minimal environmental impact (very low GWP).

Super silent

Up to 8 different acoustic configurations for a total sound emission control (of -1dB (A) up to -13 dB (A) compared to the standard configuration).

			0500	0520	0600	0650	0700	0800	0000	1000
I-FR-Q2-Z CA			0502	0532	0602	0052	0702	0602	0902	1002
Power supply		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PERFORMANCE										
COOLING ONLY (GROSS VALUE)										
Cooling capacity	(1)	kW	488	531	570	627	689	787	915	985
Total power input	(1)	kW	155	168	182	199	219	251	288	312
EER	(1)	kW/kW	3,14	3,15	3,14	3,15	3,14	3,13	3,18	3,16
COOLING ONLY (EN14511 VALUE)										
Cooling capacity	(1)(2)	kW	486	529	568	625	687	786	912	982
EER	(1)(2)	kW/kW	3,10	3,10	3,10	3,10	3,10	3,10	3,14	3,12
SEPR HT	(3)(4)		-	-	-	5,23	5,25	5,66	5,09	5,01
COOLING ONLY										
16°C/10°C										
Cooling capacity	(5)	kW	572	589	627	738	784	862	1069	1144
Total power input	(5)	kW	180	180	188	230	239	262	343	356
EER	(5)	kW/kW	3,18	3,27	3,33	3,21	3,28	3,29	3,12	3,21
23°C/15°C										
Cooling capacity	(6)	kW	659	680	724	852	906	921	1212	1304
Total power input	(6)	kW	189	189	198	244	255	271	361	378
EER	(6)	kW/kW	3,49	3,59	3,66	3,48	3,56	3,40	3,36	3,45
HEATING ONLY (GROSS VALUE)										
Total heating capacity	(7)	kW	458	486	526	593	652	757	862	928
Total power input	(7)	kW	133	143	154	171	189	216	248	265
COP	(7)	kW/kW	3,44	3,40	3,42	3,47	3,45	3,51	3,47	3,50
HEATING ONLY (EN14511 VALUE)										
Total heating capacity	(2)(7)	kW	460	487	527	594	654	759	865	931
COP	(2)(7)	kW/kW	3,42	3,38	3,41	3,45	3,43	3,49	3,44	3,48
COOLING WITH TOTAL HEAT RECOVERY										
Cooling capacity	(8)	kW	489	533	571	624	683	785	914	987
Total power input	(8)	kW	137	151	161	174	193	221	258	274
Recovery heat exchanger capacity	(8)	kW	617	675	722	788	864	993	1157	1245
TER	(8)	kW/kW	8,08	8,01	8,04	8,11	8,02	8,03	8,02	8,13
EXCHANGERS										
HEAT EXCHANGER USER SIDE IN REFRIC	ERATI	ON								
Water flow	(1)	l/s	23,31	25,41	27,26	29,97	32,95	37,65	43,76	47,12
Pressure drop	(1)	kPa	40,8	51,6	32,5	40,5	45,4	29,0	39,7	42,3
HEAT EXCHANGER USER SIDE IN HEATIN	IG									
Water flow	(7)	l/s	22,13	23,47	25,38	28,61	31,49	36,55	41,61	44,81
Pressure drop	(7)	kPa	22,5	25,4	21,4	27,0	32,0	32,2	41,7	34,9
REFRIGERANT CIRCUIT										
Compressors nr.		N°	2	2	2	2	2	2	2	2
No. Circuits		N°	2	2	2	2	2	2	2	2
Refrigerant charge		kg	230	235	240	260	260	325	350	470
NOISE LEVEL										
Sound Pressure	(9)	dB(A)	67	67	68	69	69	68	70	70
Sound power level in cooling	(10)(11)	dB(A)	100	100	101	102	102	101	103	103
Sound power level in heating	(10)(12)	dB(A)	100	100	101	102	102	101	103	103
SIZE AND WEIGHT										
A	(13)	mm	8150	8150	8900	9650	10400	10400	10400	11900
В	(13)	mm	2260	2260	2260	2260	2260	2260	2260	2260
H	(13)	mm	2530	2530	2530	2530	2530	2530	2530	2530
Operating weight	(13)	kg	8350	8380	9080	9590	10060	11010	12310	14110

Notes:

1 Plant (side) cooling exchanger water (in/out) 12°C/7°C; Source (side) heat exchanger air (in) 35°C 2 Values in compliance with EN14511-3:2013.

2 values in compliance with EVH4511-52.2013.
3 Seasonal space heating energy index
4 Seasonal energy efficiency of high temperature process cooling [REGULATION (EU) N. 2016/2281]
5 Plant (side) cooling exchanger water (in/out) 16°C/10°C; Source (side) heat exchanger air (in) 35°C
6 Acqua scambiatore freddo lato utenza (in/out) 23°C/15°C; Aria scambiatore lato sorgente (in) 35°C
7 Plant (side) heat exchanger water (in/out) 40°C/45°C; Source (side) heat exchanger air (in) 7°C - 87% B H

87% R.H.

8 Plant (side) cooling exchanger water (in/out) 12°C/7°C; Plant (side) heat exchanger water (in/out) 40°C/45°C

9 Average sound pressure level at 10m distance, unit in a free field on a reflective surface; non-binding value calculated from the sound power level 10 Sound power on the basis of measurements made in compliance with ISO 9614

11 Sound power level in cooling, outdoors

12 Sound power level in heating, outdoors 13 Unit in standard configuration/execution, without optional accessories

The units highlighted in this publication contain HFC R134a [GWP100 1430] fluorinated greenhouse gases.

KIPlink, the keyboard in your pocket

KIPlink is the innovative system that allows you to directly control the unit via smartphone or tablet through the QR code and using the Wi-Fi directly installed in the equipment.

Thanks to dedicated visuals and graphics, KIPlink allows the user to directly access the same functions as with a traditional keyboard.

KIPlink is installed as standard in all i-FR-Q2-Z units.

I

i-FR-Q₂-Z INTEGRA

4-pipe air source unit, inverter-driven screw compressors and EC fans. Cooling capacity from 341 to 1125 kW

i-FR-Q2-Z SL-CA			0502	0532	0602	0652	0702	0802	0902	1002	
Power supply		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	
COOLING ONLY (GROSS VALUE)	(1)	1414/	469	500	E 40	604	CCE	766	001	050	
Total power input	(1)		400	160	181	196	215	251	203	316	
FFR	(1)	k\///k\//	3.01	3.00	3.03	3.08	3 10	3.05	3.00	3.02	
COOLING ONLY (EN14511 VALUE)	(1)		0,01	0,00	0,00	0,00	0,10	0,00	0,00	0,02	
Cooling capacity	(1)(2)	kW	466	507	548	602	663	764	879	949	
EER	(1)(2)	kW/kW	2,98	2,96	3,00	3,04	3,06	3,03	2,97	2,98	
SEPR HT	(3)(4)		-	-	-	5,18	5,18	5,37	5,08	5,01	
COOLING ONLY											
16°C/10°C	16°C/10°C										
Cooling capacity	(5)	kW	554	571	604	710	754	836	996	1079	
Iotal power input	(5)	KVV	180	181	188	230	237	262	317	344	
23°C/15°C	(C)	KVV/KVV	3,07	3,15	3,21	3,09	3,19	3,19	3,14	3,13	
Cooling capacity	(6)	kW	638	658	704	828	878	893	1025	1228	
Total power input	(6)	kW	190	190	197	244	252	271	306	369	
EER	(6)	kW/kW	3,36	3,46	3,58	3,40	3,48	3,29	3,35	3,32	
HEATING ONLY (GROSS VALUE)	()		,	,	,	,	,	,	,		
Total heating capacity	(7)	kW	454	482	521	587	647	749	852	919	
Total power input	(7)	kW	131	141	151	168	186	212	245	262	
COP	(7)	kW/kW	3,46	3,41	3,44	3,49	3,48	3,53	3,47	3,52	
HEATING ONLY (EN14511 VALUE)	(0) (7)	1.3.47	455	400	500	500	0.40	754	054	000	
COP	(2)(7)	KVV	455	483	522	588 2.47	048 2.45	250	854	922	
COOLING WITH TOTAL HEAT BEC		KVV/KVV	3,44	3,39	3,42	3,47	3,43	3,50	3,45	3,49	
Cooling capacity	(8)	kW	489	533	571	624	683	785	914	987	
Total power input	(8)	kW	137	151	161	174	193	221	258	274	
Recovery heat exchanger capacity	(8)	kW	617	675	722	788	864	993	1157	1245	
TER	(8)	kW/kW	8,08	8,01	8,04	8,11	8,02	8,03	8,02	8,13	
EXCHANGERS											
HEAT EXCHANGER USER SIDE IN	REFRIGE	RATION	00.00	04.00	00.00	00.00	01.00	00.01	40.44	45.50	
vvater flow	(1)	I/S	22,36	24,32	26,26	28,89	31,80	36,61	42,14	45,52	
		кра	37,5	47,3	30,2	37,0	42,3	27,4	30,8	39,5	
Water flow	(7)	l/s	21.92	23 25	25.14	28.33	31.22	36 15	41 10	44.37	
Pressure drop	(7)	kPa	22.1	24.9	21.1	26.5	31.5	31.5	40.7	34.2	
REFRIGERANT CIRCUIT	()		,	, -	,	- / -			- /		
Compressors nr.		N°	2	2	2	2	2	2	2	2	
No. Circuits		N°	2	2	2	2	2	2	2	2	
Refrigerant charge		kg	230	235	240	260	260	325	350	470	
NOISE LEVEL	(0)		67	50	50	50	50	50	01	01	
Sound Pressure	(9)	aB(A)	57	58	58	59	59	59	61	61	
Sound power level in boating	(10)(11) (10)(12)	dB(A)	90	91	91	92	92	92	94 Q4	94 Q/	
SIZE AND WEIGHT	(10)(12)	0D(A)	30	51	51	52	32	52	34	34	
A	(13)	mm	8150	8150	8900	9650	10400	10400	10400	11900	
В	(13)	mm	2260	2260	2260	2260	2260	2260	2260	2260	
Н	(13)	mm	2530	2530	2530	2530	2530	2530	2530	2530	
Operating weight	(13)	kg	8800	8830	9530	10040	10510	11450	12750	14560	

Notes:

1 Plant (side) cooling exchanger water (in/out) 12°C/7°C; Source (side) heat exchanger air (in) 35°C.

2 Values in compliance with EN14511-3:2013.

3 Seasonal space heating energy index 4 Seasonal energy efficiency of high temperature process cooling [REGULATION (EU) N. 2016/2281]

5 Plant (side) cooling exchanger water (in/out) 16°C/ 10°C; Source (side) heat exchanger air (in) 35°C.

6 Acqua scambiatore freddo lato utenza (in/out) 23°C/15°C; Aña scambiatore lato sorgente (in) 35°C.
 7 Plant (side) heat exchanger water (in/out) 40°C/45°C; Source (side) heat exchanger air (in) 7°C - 87% R.H.

8 Plant (side) cooling exchanger water (in/out) 12°C/7°C; Plant (side) heat exchanger water (in/out) 40°C/45°C.

9 Average sound pressure level at 10m distance, unit in a free field on a reflective surface; non-binding value calculated from the sound power level. 10 Sound power on the basis of measurements made in compliance with ISO 9614.

11 Sound power level in cooling, outdoors.

12 Sound power level in heating, outdoors.

13 Unit in standard configuration/execution, without optional accessories. The units highlighted in this publication contain HFC R134a [GWP100 1430] fluorinated greenhouse gases.

i-FR-Q2-Z XL-CA			0502	0532	0602	0652	0702	0802	0902	1002	
Power supply		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	
PERFORMANCE											
COOLING ONLY (GROSS VALUE)											
Cooling capacity	(1)	kW	443	484	526	572	633	732	848	912	
Total power input	(1)	kW	146	162	172	185	204	239	282	302	
	(1)	KVV/KVV	3,02	2,98	3,05	3,09	3,11	3,06	3,01	3,02	
Cooling only (EN14511 VALUE)	(1)(0)		440	490	E0.4	570	601	720	01E	010	
	(1)(2)	KVV k\\//k\\/	44Z 2.00	402 2 0/	3 02	3.06	3 07	202	040	2 00	
SEPR HT	(1)(2) (3)(4)	-	2,55	2,54	5,02	5,00	5.64	5.03	2,90	2,99	
	(0)(4)				5,54	0,00	5,04	5,00	0,00		
16°C/10°C											
Cooling capacity	(5)	kW	486	565	578	629	696	800	969	1048	
Total power input	(5)	kW	152	174	179	193	212	250	301	327	
EER	(5)	kW/kW	3,20	3,24	3,23	3,27	3,27	3,20	3,22	3,21	
23°C/15°C											
Cooling capacity	(6)	kW	598	651	704	726	803	854	1096	1195	
Total power input	(6)	kW	168	184	197	204	226	258	319	350	
EER	(6)	kW/kW	3,56	3,54	3,58	3,55	3,55	3,31	3,43	3,42	
HEATING ONLY (GROSS VALUE)	(¬)		40.4	100	500	500	004	704	005	000	
Iotal heating capacity	(7)	KVV	434	462	502	560	621	/21	825	888	
Iotal power input	(7)	KVV	125	134	144	160	1/8	204	235	250	
HEATING ONLY (EN14511 VALUE)	(7)	KVV/KVV	3,48	3,44	3,47	3,50	3,50	3,54	3,51	3,55	
Total heating capacity	(2)(7)	k\M	135	463	503	562	622	723	828	801	
COP	(2)(7)	kW/kW	3 47	3 42	3 46	3 49	3 48	3 52	3 48	3 53	
COOLING WITH TOTAL HEAT REC	OVERY		0,11	0,12	0,10	0,10	0,10	0,01	0,10	0,00	
Cooling capacity	(8)	kW	464	509	549	591	651	752	883	921	
Total power input	(8)	kW	129	142	151	165	182	212	247	262	
Recovery heat exchanger capacity	(8)	kW	586	643	690	746	822	951	1116	1167	
TER	(8)	kW/kW	8,11	8,08	8,22	8,11	8,07	8,02	8,09	7,98	
EXCHANGERS											
HEAT EXCHANGER USER SIDE IN	I REFRIGE	RATION					~~~~	~~ ~~		10.00	
Water flow	(1)	l/s	21,18	23,12	25,14	27,34	30,25	35,00	40,54	43,63	
Pressure drop		кРа	33,7	42,7	27,7	33,7	38,3	25,1	34,1	36,3	
Meter flow		1/2	20.05	00.00	04.00	07.05	20.06	24.01	20.92	40.90	
Pressure drop	(7)	I/S kPa	20,95	22,29	24,23	27,05	29,90	04,01 20.2	39,00	42,09	
REFRIGERANT CIRCUIT	(r)	кга	20,2	22,5	19,0	24,2	29,0	23,2	50,2	51,5	
Compressors nr		N°	2	2	2	2	2	2	2	2	
No. Circuits		N°	2	2	2	2	2	2	2	2	
Refrigerant charge		kg	230	235	240	260	260	325	350	470	
NOISE LEVEL		0									
Sound Pressure	(9)	dB(A)	53	54	55	55	55	56	55	56	
Sound power level in cooling	(10)(11)	dB(A)	86	87	88	88	88	89	88	89	
Sound power level in heating	(10)(12)	dB(A)	87	88	89	89	89	90	89	90	
SIZE AND WEIGHT	(16)										
A	(13)	mm	8150	8150	8900	9650	10400	10400	10400	11900	
В	(13)	mm	2260	2260	2260	2260	2260	2260	2260	2260	
H Operating weight	(13)	inm	2530	2530	2530	10040	2530	2530	10750	2530	
Operating weight	(13)	ĸġ	0000	0030	9030	10040	10510	11450	12/50	14560	

Notes:

1 Plant (side) cooling exchanger water (in/out) 12°C/7°C; Source (side) heat exchanger air (in) 35°C. 2 Values in compliance with EN14511-3:2013.

3 Seasonal space heating energy index

4 Seasonal energy efficiency of high temperature process cooling [REGULATION (EU) N. 2016/2281] 5 Plant (side) cooling exchanger water (in/out) 16°C/ 10°C; Source (side) heat exchanger air (in) 35°C. 6 Acqua scambiatore freddo lato utenza (in/out) 23°C/15°C; Aria scambiatore lato sorgente (in) 35°C. 7 Plant (side) heat exchanger water (in/out) 40°C/45°C; Source (side) heat exchanger air (in) 7°C - 87% R.H. 8 Plant (side) cooling exchanger water (in/out) 12°C/7°C; Plant (side) heat exchanger water (in/out) 40°C/45°C.

9 Average sound pressure level at 10m distance, unit in a free field on a reflective surface; non-binding value calculated from the sound power level.

10 Sound power on the basis of measurements made in compliance with ISO 9614.

11 Sound power level in cooling, outdoors.

12 Sound power level in heating, outdoors. 13 Unit in standard configuration/execution, without optional accessories.

The units highlighted in this publication contain HFC R134a [GWP100 1430] fluorinated greenhouse gases.

KIPLINK, THE KEYBOARD IN YOUR POCKET

KIPlink is the innovative system that allows you to directly control the unit via smartphone or tablet through the QR code using the Wi-Fi generated by the unit.

Thanks to dedicated visuals and graphics, KIPlink allows the user to directly access the same functions as with a traditional keyboard.

KIPlink is installed as standard in all i-FR-Q2-Z units.

"EXPERIENCE IS BY FAR THE BEST PROOF"

Sir Francis Bacon British philosopher (1561 - 1626)

IT COOLING

PROJECT

WIIT is an Italian company focused on Private and Hybrid Cloud continuative services, is one of the main player in Europe and Worldwide among the specialized players in application management and critical application as disaster recovery and business continuity are. WIIT owns three data centers in Italy. Milan Data Center has a surface of 550 square meters. It is the primary Data Center where the most complex ERP (Enterprise Resource Planning) infrastructure are located and managed.

CHALLENGE

Today WIIT is the first and unique Italian Provider with the maximum quality level both for its technological infrastructure (Data Center TIER IV Design Documents and Constructed Facility from 24th December 2015) and for its services supplier capacity (6 SAP certifications). These certifications probe the presence of multiple and independent systems for power and for cooling and the capacity to resist to a failure or to prolonged power losses.

SOLUTION

RC has supplied a high energy saving full redundant solution for this TIER IV certified Data Center. The direct expansion precision air conditioners equipped with BLDC inverter scroll compressor matched with remote air cooled condensers represent a perfect example of reliability and efficiency. The use of direct free cooling increases furthermore the efficiency of the system.

Every project is characterized by different usage conditions and system specifications for many different latitudes. All these projects share high energy efficiency, maximum integration, and total reliability due to the unique experience of Climaveneta branded solutions.

proRZ Data Center 2016-2017 Munich (Germany)

Application: Data Center Plant type: Hydronic System, HPAC System Cooling capacity: 1800 kW Installed machines: 2x air cooled liquid chillers with free-cooling system in A class energy efficiency, 14x chilled water close control units

Nuovo Pignone

2013 Florence (Italy)

Application: Data Center Plant type: HPAC System Cooling capacity: 400 kW Installed machines: 5x Inverter direct expansion air cooled close control units, 4x in row direct expansion rack cooler units, 4x Inverter condensing units

Galileo Connect London Central

2012 London (Great Britain)

Application: Data Center Plant type: HPAC System Cooling capacity: 4852 kW Installed machines: 3x high efficiency air source chillers, 29x chilled water close control units

Eco Changes is the Mitsubishi Electric Group's environmental statement, and expresses the Group's stance on environmental management. Through a wide range of businesses, we are helping contribute to the realization of a Д

MITSUBISHI ELECTRIC HYDRONICS & IT COOLING SYSTEMS S.p.A.

Head Office: Via Roma 5 - 27010 Valle Salimbene (PV) - Italy Tel +39 (0) 382 433 811 - Fax +39 (0) 382 587 148 www.rcitcooling.com www.melcohit.com